Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes.

نویسندگان

  • Stefaan W Verbruggen
  • Ted J Vaughan
  • Laoise M McNamara
چکیده

The osteocyte is believed to act as the main sensor of mechanical stimulus in bone, controlling signalling for bone growth and resorption in response to changes in the mechanical demands placed on our bones throughout life. However, the precise mechanical stimuli that bone cells experience in vivo are not yet fully understood. The objective of this study is to use computational methods to predict the loading conditions experienced by osteocytes during normal physiological activities. Confocal imaging of the lacunar-canalicular network was used to develop three-dimensional finite element models of osteocytes, including their cell body, and the surrounding pericellular matrix (PCM) and extracellular matrix (ECM). We investigated the role of the PCM and ECM projections for amplifying mechanical stimulation to the cells. At loading levels, representing vigorous physiological activity (3000 µε), our results provide direct evidence that (i) confocal image-derived models predict 350-400% greater strain amplification experienced by osteocytes compared with an idealized cell, (ii) the PCM increases the cell volume stimulated more than 3500 µε by 4-10% and (iii) ECM projections amplify strain to the cell by approximately 50-420%. These are the first confocal image-derived computational models to predict osteocyte strain in vivo and provide an insight into the mechanobiology of the osteocyte.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease.

Osteocytes are involved in mechanosensation and mechanotransduction in bone and hence, are key to bone adaptation in response to development, ageing and disease. Thus, detailed knowledge of the three-dimensional (3D) structure of the osteocyte network (ON) and the surrounding lacuno-canalicular network (LCN) is essential. Enhanced understanding of the ON&LCN will contribute to a better understa...

متن کامل

A sclerostin-based theory for strain-induced bone formation.

Bone formation responds to mechanical loading, which is believed to be mediated by osteocytes. Previous theories assumed that loading stimulates osteocytes to secrete signals that stimulate bone formation. In computer simulations this 'stimulatory' theory successfully produced load-aligned trabecular structures. In recent years, however, it was discovered that osteocytes inhibit bone formation ...

متن کامل

The axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.

This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...

متن کامل

In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading.

Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca(2+)) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized...

متن کامل

Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.

Bone has the ability to adjust its structure to meet its mechanical environment. The prevailing view of bone mechanobiology is that osteocytes are responsible for detecting and responding to mechanical loading and initiating the bone adaptation process. However, how osteocytes signal effector cells and initiate bone turnover is not well understood. Recent in vitro studies have shown that osteoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 75  شماره 

صفحات  -

تاریخ انتشار 2012